Molecular Architecture of the Yeast Monopolin Complex
نویسندگان
چکیده
منابع مشابه
Molecular Architecture of the Yeast Monopolin Complex.
The Saccharomyces cerevisiae monopolin complex directs proper chromosome segregation in meiosis I by mediating co-orientation of sister kinetochores on the meiosis I spindle. The monopolin subunits Csm1 and Lrs4 form a V-shaped complex that may directly crosslink sister kinetochores. We report here biochemical characterization of the monopolin complex subunits Mam1 and Hrr25 and of the complete...
متن کاملMolecular architecture of the yeast Mediator complex
The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined th...
متن کاملMolecular architecture and assembly of the yeast kinetochore MIND complex
The MIND multiprotein complex is a conserved, essential component of eukaryotic kinetochores and is a constituent of the tripartite KMN network that directly attaches the kinetochore to the mitotic spindle. The primary microtubule-binding complex in this network, NDC80, has been extensively characterized, but very little is known about the structure or function of the MIND complex. In this stud...
متن کاملMolecular architecture of SMC proteins and the yeast cohesin complex.
Sister chromatids are held together by the multisubunit cohesin complex, which contains two SMC (Smc1 and Smc3) and two non-SMC (Scc1 and Scc3) proteins. The crystal structure of a bacterial SMC "hinge" region along with EM studies and biochemical experiments on yeast Smc1 and Smc3 proteins show that SMC protamers fold up individually into rod-shaped molecules. A 45 nm long intramolecular coile...
متن کاملArchitecture of the yeast Elongator complex
The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Reports
سال: 2016
ISSN: 2211-1247
DOI: 10.1016/j.celrep.2016.09.070